Kif18A Uses a Microtubule Binding Site in the Tail for Plus-End Localization and Spindle Length Regulation
نویسندگان
چکیده
منابع مشابه
Kif18A Uses a Microtubule Binding Site in the Tail for Plus-End Localization and Spindle Length Regulation
The mitotic spindle is a macromolecular structure utilized to properly align and segregate sister chromatids to two daughter cells. During mitosis, the spindle maintains a constant length, even though the spindle microtubules (MTs) are constantly undergoing polymerization and depolymerization [1]. Members of the kinesin-8 family are important for the regulation of spindle length and for chromos...
متن کاملThe Kinesin-8 Kif18A Dampens Microtubule Plus-End Dynamics
Motility is a fundamentally important property of most members of the kinesin superfamily, but a rare subset of kinesins are also able to alter microtubule dynamics. At kinetochore-microtubule plus ends, the kinesin-8 family member Kif18A is essential to align mitotic chromosomes at the spindle equator during cell division, but how it accomplishes this function is unclear. We report here that K...
متن کاملBiased Brownian motion as a mechanism to facilitate nanometer-scale exploration of the microtubule plus end by a kinesin-8.
Kinesin-8s are plus-end-directed motors that negatively regulate microtubule (MT) length. Well-characterized members of this subfamily (Kip3, Kif18A) exhibit two important properties: (i) They are "ultraprocessive," a feature enabled by a second MT-binding site that tethers the motors to a MT track, and (ii) they dissociate infrequently from the plus end. Together, these characteristics combine...
متن کاملA tethering mechanism controls the processivity and kinetochore-microtubule plus-end enrichment of the kinesin-8 Kif18A.
Metaphase chromosome positioning depends on Kif18A, a kinesin-8 that accumulates at and suppresses the dynamics of K-MT plus ends. By engineering Kif18A mutants that suppress MT dynamics but fail to concentrate at K-MT plus ends, we identify a mechanism that allows Kif18A to accumulate at K-MT plus ends to a level required to suppress chromosome movements. Enrichment of Kif18A at K-MT plus ends...
متن کاملThe microtubule-based motor Kar3 and plus end–binding protein Bim1 provide structural support for the anaphase spindle
In budding yeast, the mitotic spindle is comprised of 32 kinetochore microtubules (kMTs) and approximately 8 interpolar MTs (ipMTs). Upon anaphase onset, kMTs shorten to the pole, whereas ipMTs increase in length. Overlapping MTs are responsible for the maintenance of spindle integrity during anaphase. To dissect the requirements for anaphase spindle stability, we introduced a conditionally fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Biology
سال: 2011
ISSN: 0960-9822
DOI: 10.1016/j.cub.2011.08.005